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Abstract

A dioc&ic&wmped ZnSe:C#+ laser was opemted with a
75- Watt peak ~wer 1.65 ~ InGaAsP/InP pump array.
The laser was configured with a “single-bounce’*
architecture to maximize its round-trip gain. Peak output
powers of -0.3 Watt were obtained with a 10% -
transmitting output coupler and a Iightlydopd crystal.
The estimated “mode fill” of-0.06 will increase with Cr2+
concentration, raising the output power and extraction
efficiency. WM_sa grating tuner and MgF2:Co2+ laser
pumping, the laser tuned throughout the 2134-2799 nm
range.
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Within the last few years, the dhndent-transition-metal-
doped II -VI material class has been proposed as source of
new tunable mid-IR lasers. These new lasers could
presumably find many applications, including those
currently filled by pammetric oscillators, lead-salt diode
lasers, etc. Spectroscopic evaluation[l] exposed Cr2+ as a
prime laser candidate on account of its high luminescence
quantum yield and the expectation that- ESA would be
absent. ZnSe and ZnS wese host media that gave laser
action in a confocal cavity when pumped with a -1900 nm
MgF2:Co2+ laseu[2, 3] untuned operation centered around
2350 nm, the wavelength of maximum emission cross
section. Three different doping methods (melt growth,
seeded physical vapor transport, and diffusion doping) have
produced ZnSe:Cr2+ crystals that lase. Use of an
intracavity birefringent filter initially allowed tuning

throughout the 2280 - 2530 nm range. Several
development opportunities remained to be ~
including construction of a diode-pumped laser
system,extension of the laser’s tuning range, and

. improvement of the laser material quality (and hence, the
slope efllciency.)

Spectroscopic parameters (see Table I) have a decisive
impact on the choice of laser design. ZnSe:C#+ has been
referred to as “the T]-sapphire of the mid-IR” on account of
its similar electronic transition symmetry, short energy-
storage lifetime (-9 psec,) and broad emission Iinewidth
(implying a wide tuning range of -20tXt -3000 rim.) A
salient difference is the much larger transition cross
section, which, together with the longer fluorescence
lifetime and smaller transition energy, combine to give a
much smaller (by over two orders of magnitude) saturation
intensity Isat = hv/crt - 14 kW/cm2. Generally,
efficient laser operation mandates a pump intensity on the
order of Isat, although lower intensities also can work well
in side-pumped configurations. The first ZnSe:Cr2+ laser
demonstrations were conducted in an end-pumped geometry

Table I. Spectroscopic properties of Ti3+ in A1203 andC#+

in II-VI hosts; the low Isat value for the latter enables diode-

pumpcd laser operation.
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. with a tightly-focused (-0.2 mm spot) MgF2:Co2+ laser

beam, for a peak pump intensity well over 100 kW/cm2,

so laser threshold was easily reached. Upon “radiance

conditioning,” available diode arrays for the pmfemed 1.8

Km pump wavelength deliver more modest intensities of
only a few kW/cm2, so the low Isat value can be

considered a crucial factor enabling efficient diocbpumped

laser performance.

Fig. 1. Diode-side-pumpedlaser design, which facilitates
integration of a ZnSe:Cr slab and a multiple-bar dkde array.

Our diode-pumped laser design (Figure 1) is based on
that of a previously-reported diode-pumped NdYV04
laser.[4] The output of four microlensed 1.65 pm
InGaAsP/fnP diode bars is combined in a cylindrical lens
and focused onto a -0.2 mm stripe on a ZnSe:Cr slab,
whose end-f- are AR-coated for 2.5 pm. The single
bounce at the “TIR interface” allows the resonated beam to
sample the high-gain pump face region, yet enter and exit
the crystal without aperture losses. Output energy ad
beam quality depend on the bounce angle and penetration
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Fig. 2. Slope data for a 4-bar InGaAsP/InP pump array

operating at -1.65 ~m. The threshold and slope are

respectively 24.4 A and 0.795 WIA.

depth of the pump light. [4] The diode array, when operated
at a low duty cycle with a 50 wec pulsewidth, gave the
slope data of Figure 2; a maximum diode power of 75 W
was obtained, and an array-integrated slope of 0.795 W/A
corresponding to a slope for each diode bar of -0.2 W/A.
Slope-efficiency data for the integrated laser using a series
of flat output couplers are shown in Figure 3. (The pump-
energy scale has been normalized by a factor of 0.06,

50 70 90 110 130 150 170

Pump energy absorbed in lasing volume
(miaujoule)

Fig. 3. Slope data for the diode-pumped ZnSeCr laser
operating with several different flat output couplers. The
pump-energyaxis has been scaled to account for an estima~ed
mode fill of 0.06;

roughly representing the fraction of the pump energy

absti in one resonated-mode diameter. Our lightly-
doped crystal had a 1.65 pm pump absorption coefficient
of -2.2 cm-l, half the 1.8pm value of (smax - 4.4 cm-l,
associated with a C~+ concentration roughly 5 x 1018 cm-
3.) Here the threshold energy increases substantially for
output coupling values above 10%, reflecting a crystal
passive loss estimated at cl l.ss - 15%/cm. The
maximum peak output power of 0.34W was achieved with
the 90% -reflecting output coupler. A “figure of merit”
FOM = amax/a105s can be used to describe crystal
quality; in thk case, FOM -27. Our crystal - growth
efforts are aimed at raising the doping level and pump
absorption without increasing the passive loss. In geneml,
we have found that the loss increases supra - linearly with
the doping level, leadkg us to think that clustering of Cr
ions may be a mechanism causing loss to appear. Virgin
ZnS and ZnSe materials are prized for their extremely -
high transparency and low absorption, even out to
wavelengths as long as 10.6 pm, so there is something
associated with Cr - doping that causes loss to appear.

Grating-tuning experiments were done by replacing the
cavity high-reflector with a 420 line/mm diffraction grating
on a rotation stage, and using curved output couplers. The
diode array was removed and a pump beam from a



.
MgF2:Co2+ laser was focused onto the crystal using the
same cylindrical lens. Since the MgF2:Co2+ laser has a
low-divergence beam, its brightness is much higher than
that of the diode array, making it easier to reach threshold
with a Iossy cavity element (i.e. grating.) output
wavelengths were checked with a monochromator.
According to the tuning curve in Figure 4, the long-
wavelength limit of operation appears to be -2670 nm,
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Fig. 4. Tuning characteristics obtained with MgF2:Co2+ laser
pumping of ZnSe:Cr, resonated with a diffraction grating. The

output - coupler transmittance spectrum reveals the OH

absorption in the BK -7 glass substrate material that blocked

the laser’s output from -2650-2800 nm.

but in fact the OH - induced absorption in the BK - 7
mirror substrate blocked the laser output, which actually
extended to 2799 nm. The short-wavelength cutoff was
2134 nm; even though the emission cross section remains
substantial, self-absorption most likely inhibits laser
operation. Higher-power pumping of this laser may well
extend the tuning range at both the long- and short -
wavelength ends.

This work was supported by the U. S. Department of
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